Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sports Sci Med ; 23(1): 196-208, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38455438

RESUMEN

Torsional stiffness of athletic footwear plays a crucial role in preventing injury and improving sports performance. Yet, there is a lack of research focused on the biomechanical effect of torsional stiffness in badminton shoes. This study aimed to comprehensively investigate the influence of three different levels of torsional stiffness in badminton shoes on biomechanical characteristics, sports performance, and injury risk in badminton players. Fifteen male players, aged 22.8 ± 1.96 years, participated in the study, performing badminton-specific tasks, including forehand clear stroke [left foot (FCL) and right foot (FCR)], 45-degree sidestep cutting (45C), and consecutive vertical jumps (CVJ). The tasks were conducted wearing badminton shoes of torsional stiffness measured with Shore D hardness 50, 60, and 70 (referred to as 50D, 60D, and 70D, respectively). The primary biomechanical parameters included ankle, knee, and MTP joint kinematics, ankle and knee joint moments, peak ground reaction forces, joint range of motion (ROM), and stance time. A one-way repeated measures ANOVA was employed for normally distributed data and Friedman tests for non-normally distributed data. The 70D shoe exhibited the highest ankle dorsiflexion and lowest ankle inversion peak angles during 45C task. The 60D shoe showed significantly lower knee abduction angle and coronal motions compared to the 50D and 70D shoes. Increased torsional stiffness reduced stance time in the FCR task. No significant differences were observed in anterior-posterior and medial-lateral ground reaction forces (GRF). However, the 70D shoe demonstrated higher vertical GRF than the 50D shoe while performing the FCR task, particularly during 70% - 75% of stance. Findings from this study revealed the significant role of torsional stiffness in reducing injury risk and optimizing performance during badminton tasks, indicating that shoes with an intermediate level of stiffness (60D) could provide a beneficial balance between flexibility and stability. These findings may provide practical references in guiding future badminton shoe research and development. Further research is necessary to explore the long-term effects of altering stiffness, considering factors such as athletic levels and foot morphology, to understand of the influence of torsional stiffness on motion biomechanics and injury prevalence in badminton-specific tasks.


Asunto(s)
Extremidad Inferior , Deportes de Raqueta , Humanos , Masculino , Fenómenos Biomecánicos , Pie , Rodilla
2.
J Biomech ; 162: 111865, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37976687

RESUMEN

Individuals with chronic ankle instability (CAI) suffer from the resulting sequela of repetitive lateral ankle sprains (LAS), whilst copers appear to cope with initial LAS successfully. Therefore, the aim of this study was to explore the intra-foot biomechanical differences among CAI, copers, and healthy individuals during dynamic tasks. Twenty-two participants per group were included and required to perform cutting and different landing tasks (DL: drop landing; FL: forward jump followed a landing). A five-segment foot model with 8 degrees of freedom was used to explore the intra-foot movement among these three groups. Smaller dorsiflexion angles were found in copers (DL tasks and prelanding task) and CAI (DL and FL task) compared to healthy participants. Copers presented a more eversion position compared to others during these dynamic tasks. During the descending phase of DL task, greater dorsiflexion angles in the metatarsophalangeal joint were found in copers compared to the control group. Joint moment difference was only found in the subtalar joint during the descending phase of FL task, presenting more inversion moments in copers compared to healthy participants. Copers rely on more eversion positioning to prevent over-inversion of the subtalar joint compared to CAI. Further, the foot became more unstable when conducting sport-related movements, suggesting that foot stability seems to be sensitive to the task types. These findings may help in designing and implementing interventions to restore functions of the ankle joint in CAI individuals.


Asunto(s)
Traumatismos del Tobillo , Inestabilidad de la Articulación , Humanos , Tobillo , Fenómenos Biomecánicos , Articulación del Tobillo , Pie , Movimiento , Enfermedad Crónica
3.
Front Bioeng Biotechnol ; 11: 1276864, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152288

RESUMEN

Introduction: Given the possibility of higher ground temperatures in the future, the pursuit of a cushioning material that can effectively reduce sports injuries during exercise, particularly one that retains its properties at elevated temperatures, has emerged as a serious concern. Methods: A total of 18 man recreational runners were recruited from Ningbo University and local clubs for participation in this study. Frequency analysis was employed to investigate whether there is a distinction between non-Newtonian (NN) shoes and ethylene vinyl acetate (EVA) shoes. Results: The outcomes indicated that the utilization of NN shoes furnished participants with superior cushioning when engaging in a 90° cutting maneuver subsequent to an outdoor exercise, as opposed to the EVA material. Specifically, participants wearing NN shoes exhibited significantly lower peak resultant acceleration (p = 0.022) and power spectral density (p = 0.010) values at the distal tibia compared to those wearing EVA shoes. Moreover, shock attenuation was significantly greater in subjects wearing NN shoes (p = 0.023) in comparison to EVA shoes. Performing 90° cutting maneuver in NN shoes resulted in significantly lower peak ground reaction force (p = 0.010), vertical average loading rate (p < 0.010), and vertical instantaneous loading rate (p = 0.030) values compared to performing the same maneuvers in EVA shoes. Conclusion: The study found that the PRA and PSD of the distal tibia in NN footwear were significantly lower compared to EVA footwear. Additionally, participants exhibited more positive SA while using NN footwear compared to EVA. Furthermore, during the 90° CM, participants wearing NN shoes showed lower PGRF, VAIL, and VILR compared to those in EVA shoes. All these promising results support the capability of NN footwear to offer additional reductions in potential injury risk to runners, especially in high-temperature conditions.

4.
PeerJ ; 11: e16180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842036

RESUMEN

Background: Simulation models have been applied to analyze daily living activities and some sports movements. However, it is unknown whether the current upper extremity musculoskeletal models can be utilized for investigating cue sports movements to generate corresponding kinematic and muscle activation profiles. This study aimed to test the feasibility of applying simulation models to investigate cue sports players' cueing movements with OpenSim. Preliminary muscle forces would be calculated once the model is validated. Methods: A previously customized and validated unimanual upper extremity musculoskeletal model with six degrees of freedom at the scapula, shoulder, elbow, and wrist, as well as muscles was used in this study. Two types of cueing movements were simulated: (1) the back spin shot, and (2) 9-ball break shot. Firstly, kinematic data of the upper extremity joints were collected with a 3D motion capture system. Using the experimental marker trajectories of the back spin shot on 10 male cue sports players, the simulation on the cueing movements was executed. The model was then validated by comparing the model-generated joint angles against the experimental results using statistical parametric mapping (SPM1D) to examine the entire angle-time waveform as well as t-tests to compare the discrete variables (e.g., joint range of motion). Secondly, simulation of the break shot was run with the experimental marker trajectories and electromyographic (EMG) data of two male cue sports players as the model inputs. A model-estimated muscle activation calculation was performed accordingly for the upper extremity muscles. Results: The OpenSim-generated joint angles for the back spin shot corresponded well with the experimental results for the elbow, while the model outputs of the shoulder deviated from the experimental data. The discrepancy in shoulder joint angles could be due to the insufficient kinematic inputs for the shoulder joint. In the break shot simulation, the preliminary findings suggested that great shoulder muscle forces could primarily contribute to the forward swing in a break shot. This suggests that strengthening the shoulder muscles may be a viable strategy to improve the break shot performance. Conclusion: It is feasible to cater simulation modeling in OpenSim for biomechanical investigations of the upper extremity movements in cue sports. Model outputs can help better understand the contributions of individual muscle forces when performing cueing movements.


Asunto(s)
Señales (Psicología) , Articulación del Hombro , Masculino , Humanos , Simulación por Computador , Hombro/fisiología , Músculo Esquelético/fisiología , Articulación del Hombro/fisiología
5.
Front Physiol ; 14: 1217276, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795266

RESUMEN

Purpose: Foot adaptation in the typically developed foot is well explored. In this study, we aimed to explore the form and function of an atypical foot, the Chinese bound foot, which had a history of over a thousand years but is not practised anymore. Methods: We evaluated the foot shape and posture via a statistical shape modelling analysis, gait plantar loading distribution via gait analysis, and bone density adaptation via implementing finite element simulation and bone remodelling prediction. Results: The atypical foot with binding practice led to increased foot arch and vertically oriented calcaneus with larger size at the articulation, apart from smaller metatarsals compared with a typically developed foot. This shape change causes the tibia, which typically acts as a load transfer beam and shock absorber, to extend its function all the way through the talus to the calcaneus. This is evident in the bound foot by i) the reduced center of pressure trajectory in the medial-lateral direction, suggesting a reduced supination-pronation; ii) the increased density and stress in the talus-calcaneus articulation; and iii) the increased bone growth in the bound foot at articulation joints in the tibia, talus, and calcaneus. Conclusion: Knowledge from the last-generation bound foot cases may provide insights into the understanding of bone resorption and adaptation in response to different loading profiles.

6.
J Sports Sci ; 41(10): 972-989, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37742342

RESUMEN

Badminton footwork has been characterised with jump-landing, cross step, side side and lunges, which requires movement agility to facilitate on-court performance. A novel badminton shoe design with systematic increase of lateral wedge hardness (Asker C value of 55, 60, 65, and 70) was developed and investigated in this study, aiming to analyse the dose-response effect of incremental wedge hardness on typical badminton footwork. Stance time and joint stiffness were employed to investigate the footwork performance, and the factorial Statistical non-Parametric Mapping and Principal Component Analysis (PCA) were used to quantify the biomechanical responses over the stance. As reported, shorter contact times (decreased by 8.9%-13.5%) and increased joint stiffness (in side step) of foot-ankle complex were found, suggesting improved footwork stability and agility from increased hardness. Time-varying differences were noted during the initial landing and driving-off phase of cross and side steps and drive-off returning of lunges, suggesting facilitated footwork performance. The reconstructed modes of variations from PCA further deciphered the biomechanical response to the wedge dosage, especially during drive-off, to understand the improved footwork agility and stability.


Asunto(s)
Extremidad Inferior , Deportes de Raqueta , Humanos , Fenómenos Biomecánicos/fisiología , Dureza , Extremidad Inferior/fisiología , Articulaciones/fisiología , Deportes de Raqueta/fisiología
8.
Gait Posture ; 106: 11-17, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37611480

RESUMEN

BACKGROUND: Understanding detailed foot morphology as well as regional plantar forces could provide insight into foot function and provide recommendation for footwear design for chronic ankle instability (CAI) people. RESEARCH QUESTION: This study presented 3-dimensional statistical shape models of feet from three different populations including CAI, copers and healthy individuals, with regional plantar forces also acquired. METHODS: Sixty-six males (22 participants per group) were included in this study to capture 3-dimensional foot shapes under a standing condition and regional plantar forces during a cutting maneuver. Principal component analysis was performed to generate a mean foot shape of each group as well as modes of variations. A generalized procrustes analysis was used to achieve rapid registration of mean shapes. Besides, regional plantar forces and contact duration among these three populations were compared. RESULTS: For 3-dimensional foot shapes, although no significant differences of the average distance between each mode and mean shape were found among three populations, there were subtle variations in mean shapes. The CAI population presented a more bulging of the lateral malleolus; copers were characterized by the flexion of the lesser toes, a more bulging of the medial foot in the sagittal plane; and healthy individuals showed a greater heel width and a more bulging of the heel in the sagittal plane. In terms of plantar forces, healthy individuals had significantly greater summated plantar forces and greater plantar forces in the lateral heel area during the early contact phase compared to copers and CAI participants. SIGNIFICANCE: Overall, this study suggested that repetitive ankle sprains may lead to the bulging of the lateral malleolus. Further, CAI and copers seem to stabilize the ankle joint by medially shifting the center of pressure compared to healthy individuals under the static and less challenging dynamic conditions.

9.
Front Bioeng Biotechnol ; 11: 1229574, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614628

RESUMEN

Introduction: Playing badminton has been reported with extensive health benefits, while main injuries were documented in the lower extremity. This study was aimed to investigate and predict the knee- and ankle-joint loadings of athletes who play badminton, with "gold standard" facilities. The axial impact acceleration from wearables would be used to predict joint moments and contact forces during sub-maximal and maximal lunge footwork. Methods: A total of 25 badminton athletes participated in this study, following a previously established protocol of motion capture and musculoskeletal modelling techniques with the integration of a wearable inertial magnetic unit (IMU). We developed a principal component analysis (PCA) statistical model to extract features in the loading parameters and a multivariate partial least square regression (PLSR) machine learning model to correlate easily collected variables, such as the stance time, approaching velocity, and peak accelerations, with knee and ankle loading parameters (moments and contact forces). Results: The key variances of joint loadings were observed from statistical principal component analysis modelling. The promising accuracy of the partial least square regression model using input parameters was observed with a prediction accuracy of 94.52%, while further sensitivity analysis found a single variable from the ankle inertial magnetic unit that could predict an acceptable range (93%) of patterns and magnitudes of the knee and ankle loadings. Conclusion: The attachment of this single inertial magnetic unit sensor could be used to record and predict loading accumulation and distribution, and placement would exhibit less influence on the motions of the lower extremity. The intelligent prediction of loading patterns and accumulation could be integrated to design training and competition schemes in badminton or other court sports in a scientific manner, thus preventing fatigue, reducing loading-accumulation-related injury, and maximizing athletic performance.

10.
Front Bioeng Biotechnol ; 11: 1192524, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37539437

RESUMEN

This study provided a comprehensive updated review of the biological aspects of children foot morphology across different ages, sex, and weight, aiming to reveal the patterns of normal and pathological changes in children feet during growth and development. This review article comprised 25 papers in total that satisfied the screening standards. The aim was to investigate how weight changes, age and sex affect foot type, and gain a deeper understanding of the prevalent foot deformities that occur during children growth. Three different foot morphological conditions were discussed, specifically including the effect of sex and age differences, the effect of weight changes, and abnormal foot morphologies commonly documented during growth. This review found that sex, age, and weight changes would affect foot size, bony structure, foot posture, and plantar pressures during child growth. As a result of this biological nature, the children's feet generally exhibit neutral and internally rotated foot postures, which frequently lead to abnormal foot morphologies (e.g., flat foot, pronated foot, etc.). In the future, attention shall be paid to the causal factors leading to specific foot morphologies during the growth and development of children. However, sufficient evidence could not be provided due to a relatively short period of investigation and non-uniformed research methodology in the current literature. A more comprehensive and in-depth exploration is recommended to provide scientific evidence for the discovery of children foot development and personalized growth pattern.

11.
Front Bioeng Biotechnol ; 11: 1208711, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465692

RESUMEN

Alterations in joint contact forces (JCFs) are thought to be important mechanisms for the onset and progression of many musculoskeletal and orthopaedic pain disorders. Computational approaches to JCFs assessment represent the only non-invasive means of estimating in-vivo forces; but this cannot be undertaken in free-living environments. Here, we used deep neural networks to train models to predict JCFs, using only joint angles as predictors. Our neural network models were generally able to predict JCFs with errors within published minimal detectable change values. The errors ranged from the lowest value of 0.03 bodyweight (BW) (ankle medial-lateral JCF in walking) to a maximum of 0.65BW (knee VT JCF in running). Interestingly, we also found that over parametrised neural networks by training on longer epochs (>100) resulted in better and smoother waveform predictions. Our methods for predicting JCFs using only joint kinematics hold a lot of promise in allowing clinicians and coaches to continuously monitor tissue loading in free-living environments.

12.
Healthcare (Basel) ; 11(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37239704

RESUMEN

Children's footwear plays an important role in the healthy growth of foot and gait development during the growing stage. This review aims to synthesize findings of previous investigations and to explore the biomechanical influences of different types of children's footwear on foot health and gait development, thus guiding the healthy and safe growth of children's feet and gait. Online databases were searched for potential eligible articles, including Web of Science, Google Scholar, and PubMed. In total, nineteen articles were identified after searching based on the inclusion requirements. The following five aspects of biomechanical parameters were identified in the literature, including spatiotemporal, kinematics, kinetics, electromyography (EMG), and plantar pressure distribution. Children's footwear can affect their foot health and gait performance. In addition, children's shoes with different flexibility and sole hardness have different effects on children's feet and gait development. Compared to barefoot, the stride length, step length, stride time, and step time were increased, but cadence was decreased with wearing shoes. Furthermore, the support base and toe-off time increased. Double support time and stance time increased, but single support time decreased. The hip, knee, and ankle joints showed increased range of motion in children with the rear-foot strike with larger ground reaction force as well. Future studies may need to evaluate the influence of footwear types on gait performance of children in different age groups. Findings in this study may provide recommendations for suitable footwear types for different ages, achieving the aim of growth and development in a healthy and safe manner.

13.
Front Physiol ; 13: 1062598, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569759

RESUMEN

The current narrative review has explored known associations between foot shape, foot posture, and foot conditions during running. The artificial intelligence was found to be a useful metric of foot posture but was less useful in developing and obese individuals. Care should be taken when using the foot posture index to associate pronation with injury risk, and the Achilles tendon and longitudinal arch angles are required to elucidate the risk. The statistical shape modeling (SSM) may derive learnt information from population-based inference and fill in missing data from personalized information. Bone shapes and tissue morphology have been associated with pathology, gender, age, and height and may develop rapid population-specific foot classifiers. Based on this review, future studies are suggested for 1) tracking the internal multi-segmental foot motion and mapping the biplanar 2D motion to 3D shape motion using the SSM; 2) implementing multivariate machine learning or convolutional neural network to address nonlinear correlations in foot mechanics with shape or posture; 3) standardizing wearable data for rapid prediction of instant mechanics, load accumulation, injury risks and adaptation in foot tissue and bones, and correlation with shapes; 4) analyzing dynamic shape and posture via marker-less and real-time techniques under real-life scenarios for precise evaluation of clinical foot conditions and performance-fit footwear development.

14.
Heliyon ; 8(11): e11517, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36406689

RESUMEN

This study presents a database of joint angles, moments, and forces of the lower extremity from distance running at a submaximal speed in recreational runners. Twenty recreational runners participated in two experimental sessions, specifically pre and post a 5k treadmill run, with a synchronous collection of markers trajectories and ground reaction forces for both limbs in walking and running trials. The raw data in C3D files could be used for musculoskeletal modelling. Extra datasets of joint angles, moments, and forces are presented ready-for-use in MAT files, which could be as reference for study of biomechanical alterations from distance running. Applying advanced data processing techniques (Machine Learning algorithms) to these datasets ( C3D & MAT ), such as Principal Component Analysis, could extract key features of variation, thus potentially being applied for correlation with accelerometric and gyroscope parameters from wearable sensors during field running. Dataset of multi-segmental foot could be another contribution for the investigation of foot complex biomechanics from distance running. The dataset from Asian males may also be used for population-based studies of running biomechanics.

15.
Bioengineering (Basel) ; 9(9)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36134957

RESUMEN

There are still few portable methods for monitoring lower limb joint coordination during the cutting movements (CM). This study aims to obtain the relevant motion biomechanical parameters of the lower limb joints at 90°, 135°, and 180° CM by collecting IMU data of the human lower limbs, and utilizing the Long Short-Term Memory (LSTM) deep neural-network framework to predict the coordination variability of selected lower extremity couplings at the three CM directions. There was a significant (p < 0.001) difference between the three couplings during the swing, especially at 90° vs the other directions. At 135° and 180°, t13-he coordination variability of couplings was significantly greater than at 90° (p < 0.001). It is important to note that the coordination variability of Hip rotation/Knee flexion-extension was significantly higher at 90° than at 180° (p < 0.001). By the LSTM, the CM coordination variability for 90° (CMC = 0.99063, RMSE = 0.02358), 135° (CMC = 0.99018, RMSE = 0.02465) and 180° (CMC = 0.99485, RMSE = 0.01771) were accurately predicted. The predictive model could be used as a reliable tool for predicting the coordination variability of different CM directions in patients or athletes and real-world open scenarios using inertial sensors.

16.
Bioengineering (Basel) ; 9(6)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35735489

RESUMEN

With the progress and innovation of table tennis technology, individualized training programs may deserve special attention. This study aimed to analyze elite table tennis athletes in chasse-step, with a particular focus on sex-based biomechanical differences. A total of 36 (18 males and 18 females) elite table tennis athletes performed topspin forehand of chasse-step. Angles and moments of hip, knee, and ankle joints were calculated using OpenSim (v4.2) with marker trajectories and ground reaction forces were measured via Vicon motion capture system and AMTI in-ground force platform. Males had greater hip and knee flexion angles during the entire motion phase and greater internal rotation angles of the hip during the forward swing phase. The joint stiffness of knee in males was greater than females in the frontal plane. Females in the forward swing phase showed greater hip flexion, adduction, and internal rotation moments than males. It was suggested that the difference may be due to the limitation of anatomical structures in sexes. Male table tennis athletes should strengthen lower extremity muscle groups to improve performance, while female table tennis athletes should focus on hip joint groups to avoid injury. The sex differences presented in this study could help coaches and athletes to develop individualized training programs for table tennis.

17.
Front Bioeng Biotechnol ; 10: 843204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402419

RESUMEN

The human being's locomotion under the barefoot condition enables normal foot function and lower limb biomechanical performance from a biological evolution perspective. No study has demonstrated the specific differences between habitually barefoot and shod cohorts based on foot morphology and dynamic plantar pressure during walking and running. The present study aimed to assess and classify foot metrics and dynamic plantar pressure patterns of barefoot and shod people via machine learning algorithms. One hundred and forty-six age-matched barefoot (n = 78) and shod (n = 68) participants were recruited for this study. Gaussian Naïve Bayes were selected to identify foot morphology differences between unshod and shod cohorts. The support vector machine (SVM) classifiers based on the principal component analysis (PCA) feature extraction and recursive feature elimination (RFE) feature selection methods were utilized to separate and classify the barefoot and shod populations via walking and running plantar pressure parameters. Peak pressure in the M1-M5 regions during running was significantly higher for the shod participants, increasing 34.8, 37.3, 29.2, 31.7, and 40.1%, respectively. The test accuracy of the Gaussian Naïve Bayes model achieved an accuracy of 93%. The mean 10-fold cross-validation scores were 0.98 and 0.96 for the RFE- and PCA-based SVM models, and both feature extract-based and feature select-based SVM models achieved an accuracy of 95%. The foot shape, especially the forefoot region, was shown to be a valuable classifier of shod and unshod groups. Dynamic pressure patterns during running contribute most to the identification of the two cohorts, especially the forefoot region.

18.
Children (Basel) ; 9(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35327751

RESUMEN

Sensory processing disorder (SPD) could influence the neuromuscular response and adjustment to external sensory discrimination and lead to disruptions in daily locomotion. The objective of the current study was to compare plantar loadings and foot balance during walking, running and turning activities in SPD children in order to reveal the behavioral strategy of movement and balance control. Six SPD children and six age-match healthy controls participated in the test using a FootScan plantar pressure plate. The time-varying parameters of forces, center of pressure and foot balance index were analyzed using an open-source one-dimensional Statistical Parametric Mapping (SPM1d) package. No difference was found in foot balance and plantar loadings during walking, while limited supination-pronation motion was observed in the SPD children during running and turning. The plantar forces were mainly located in the midfoot region while less toe activity was found as well. Findings should be noted that SPD children had limited supination-pronation movement for shock attenuation in the foot complex and reduced ankle pronation to assist push-off and toe gripping movements. Understanding the behavior of plantar loading strategy and balance control during walking, running and turning activities may provide clinical implications for the rehabilitation and training of daily tasks.

19.
Children (Basel) ; 9(3)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35327778

RESUMEN

Independent ambulation is one of the most important motor skills in typically developing toddlers. Gait analysis is a key evaluation method in basic and clinical research. A narrative review on the literature of toddler gait development was conducted following inclusion criteria, explicitly including the factors of English article, age range, no external intervention during the experimental process of studies involved, the non-symptomatic toddler, and no pathological gait. Studies about toddlers' morphological, physiological, and biomechanical aspects at this developmental stage were identified. Remarkable gait characteristics and specific development rules of toddlers at different ages were reported. Changes in gait biomechanics are age and walking experience-dependent. Gait patterns are related to the maturation of the neuro and musculoskeletal systems. This review thus provides critical and theoretical information and the nature of toddler walking development for clinicians and other scientific researchers. Future studies may systematically recruit subjects with more explicit criteria with larger samples for longitudinal studies. A particular design could be conducted to analyze empirically before practical application. Additionally, the influence of external interventions on the development of toddler gait may need consideration for gait development in the toddler cohort.

20.
Gait Posture ; 94: 67-78, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35247827

RESUMEN

BACKGROUND: Hallux valgus (HV) is a foot deformity characterized by lateral deviation of the big toe and medial deviation of the first metatarsal. RESEARCH QUESTION: This study aimed to shed light on the treatment effects of different interventions and surgical procedures for HV deformity to determine the effectiveness of gait biomechanics correction. METHODS: English-language searches of the electronic databases were conducted in the Cochrane Library, Web of Science, PubMed, Scopus, and Embase. Gait biomechanics evaluation before and after conservative or operative treatments was essential for inclusion in this review. Methodological quality was assessed by the Institute of Health Economics (IHE) quality appraisal tool. All pooled analysis was based on the random-effects model. RESULTS: Twenty-five articles (1003 participants) were identified in this review. Three studies chose conservative therapies for HV deformity, incorporating foot orthotics and minimalist running intervention, and surgeries were performed in twenty-two studies. For the pressure parameter alteration under the hallux, the effect size (ES) in the conservative treatment subgroup was - 0.95 with 95%CI [- 1.69, - 0.21]. It demonstrated a moderate ES of - 0.44% and 95%CI [- 0.81, - 0.07] in the surgery subgroup. The five operations' peak pressure alteration under the hallux demonstrated a moderate ES of - 0.45% and 95%CI [- 0.54, - 0.36]. SIGNIFICANCE: Both non-operative and operative treatments could achieve the forefoot pressure redistribution, decreasing loading beneath the hallux and first metatarsal regions,However, the treatment effects of surgeries were not very robust. The percutaneous DSTR-Akin technique is recommended as an adequate operative treatment, with a large ES and moderate heterogeneity. The negative gait return effect should be noticed while using Scarf osteotomy, despite positive clinical and radiographic outcomes.


Asunto(s)
Hallux Valgus , Hallux , Huesos Metatarsianos , Fenómenos Biomecánicos , Marcha , Hallux Valgus/cirugía , Humanos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...